NLP for Chinese L2 Writing: Evaluation of Chinese Grammatical Error Diagnosis

Gaoqi RAO (饶高琦)

Beijing Language and Culture University 8.May.2018 @ LREC

Introduction

- ▶ With increasing influence of China, L2 Chinese teaching has approached in width and depth, attracting increasing NLPers attention.
- Chinese grammatical error diagnosis (CGED) is one of the most important evaluation to in this field to provide a common setting so that researchers who approach the tasks using different linguistic factors and computational techniques can compare their results.

Introduction

► Chinese is an "isolated-like" language in Sino-Tibetan language family. Grammar and lexicon made huge trouble for L2 learners from mother language of other topology or language families

► Therefore we aim grammar a center point to push the R&D for computer assistant learning

CGED-1@ICCE2014 CGED-2@ACL2015 CGED-3@COLING2016 CGED-4@IJCNLP2017

Task Description

One track in CGED2017. CGED2018: HSK

- ► The developed tool is expected to identify the error types and its position at which it occurs in the sentence
- Four PADS error types are included in the target modification taxonomy, to decrease the data sparsity caused by multi error types

redundant string, R (Addition) "我爱逛饶河夜市<u>过</u>" missing string, M (Deletion) "我爱逛饶河夜<u>L</u>" selection error, S(Substitution) "我爱<u>走</u>饶河夜市" word ordering error, W(Permutation) "我爱<u>饶河夜市逛</u>"

The input sentences may contain at least one of defined error types

Errors are described in offset of chars, instead of words

One track in CGED2014. CGED2015: TOCFL (Test Of Chinese as a Foreign Language)

Two tracks in CGED2016: TOCFL and HSK

Task Description

TOCFL (Traditional Chinese)

● Example 1.

Input: (sid=A2-0007-2) 聽說妳打算開一個慶祝會。可惜我不能參加。因為那個時候我有別的事。當然我也要參加給你慶祝慶祝。。

Output: A2-0007-2, 38, 39, R

(Notes: "參加" is a redundant word)。

● Example 2.

Input: (sid=A2-0011-1) 我<u>聽到</u>你找到工作。恭喜 恭喜!。

Output: A2-0011-1, 2, 3, S

A2-0011-1, 9, 9, M

(Notes: "聽到" should be "聽說". Besides, a word "了" is missing. The correct sentence should be "我聽說你找到工作了".

• Example 3.

Input: (sid=A2-0011-3) 我覺得對你很抱歉。我也

很想去,可是沒有辦法。

Output: A2-0011-3, correct

HSK (Standard Chinese)

● Example 1.

Input: (sid=00038800481) 我根本不能<u>了解这</u>妇女辞职回家的现象。在这个时代,为什么放弃自己的工作,就回家当家庭主妇?

Output: 00038800481, 6, 7, S

00038800481, 8, 8, R

(Notes: "了解" should be "理解". In addition, "这" is a redundant word.)。

● Example 2,

Input: (sid=00038800464) 我真不明白。她们可能是追求一些前代的浪漫。

Output: 00038800464, correct

● Example 3.

Input: (sid=00038801261)人战胜了饥饿,才努力为了下一代作更好的、更健康的东西。

Output: 00038801261, 9, 9, M -

00038801261, 16, 16, S

(Notes: "能" is missing. The word "作" should be "做". The correct sentence is "才能努力为了下一代做更好的")。

Task Description

```
〈TEXT id="A2-0005-1"〉。
我聽說你打算開一個慶祝會。對不起,我要參加,可是沒有空。你開一個慶祝會的時候我不能會參加,是因為我在外國做工作。。
〈/TEXT〉。
〈CORRECTION〉。
我聽說你打算開一個慶祝會。對不起,我要參加,可是沒有空。你開慶祝會的時候我不能參加,是因為我在外國工作。。
〈/CORRECTION〉。
〈ERROR start off="31" end_off="32" type="R"〉</ERROR〉。</p>
〈ERROR start off="42" end_off="42" type="R"〉</ERROR〉。</p>
〈ERROR start off="53" end_off="53" type="R"></ERROR〉。</p>
〈ERROR start off="53" end_off="53" type="R"></ERROR〉。</p>
〈/DOC〉。
```

任务描述

<D0C> 4

<TEXT id="A2-0005-1"> ...

我聽說你打算開一個慶祝會。對不起,我要參加,可是沒有空。你開一個慶祝會的時候我不能會參加,是因為我在外國做工作。

</TEXT> +

<CORRECTION> +

我聽說你打算開一個慶祝會。對不起,我要參加,可是沒有空。你開慶祝會的時候我不能參加,是因為我在外國工作。。

</CORRECTION>

<ERROR start off=" 31" end off=" 32" type="R"></ERROR> .

<ERROR start off=" 42" end off=" 42" type="R"></ERROR> .

<ERROR start off=" 53" end_off=" 53" type="R"></ERROR> .

</DOC> ~

(DOC> -

(TEXT id="200210543634250003_2_1x3">...

对于"安乐死"的看法,向来都是一个极具争议性的题目,因为毕竟每个人对于死亡的观念都不一样,怎样的情况下去判断,也自然产生出很多主观和客观的理论。每个人都有着生存的权利,也代表着每个人都能去决定如何结束自己的生命的权利。在我的个人观点中,如果一个长期受着病魔折磨的人,会是十分痛苦的事,不仅是病人本身,以致病者的家人和朋友,都是一件难受的事。

(/TEXT> -

(CORRECTION) -

对于"安乐死"的看法,向来都是一个极具争议性的题目,因为毕竟每个人对于死亡的观念都不一样,无论在怎样的情况下去判断,都自然产生出很多主观和客观的理论。每个人都有着生存的权利,也代表着每个人都能去决定如何结束自己的生命。在我的个人观点中,如果一个长期受着病魔折磨的人活着,会是十分痛苦的事,不仅是病人本身,对于病者的家人和朋友,都是一件难受的事。。

(/CORRECTION) .

(ERROR start off="46" end off="46" type="M"></ERROR>

(ERROR start off="56" end off="56" type="S"></ERROR>

(ERROR start off="106" end off="108" type="R"></ERROR>

(ERROR start off="133" end off="133" type="M"></ERROR>

(ERROR start off="151" end off="152" type="S"></ERROR>

(/DOC> ..

Training Sets

Evaluation	Track	Unit	Errors .	R	М	S	W
	TOCEL	10,693 。	24,492	4,472	8,739	9,897	1,384
CGED2016	TOCFL .		(100%) .	(18.3%)	(35.7%) 。	(40.4%)	(5.7%)
CGED2010		10,071	24,797	5,538	6,623	10949 .	1,687
	HSK .		(100%) .	(22.3%)	(26.7%)	(44.2%)	(6.8%)
CGED2017	HCM	10.440	26,448	5,852	7,010	11,591	1,995
	HSK -	10,449	(100%) .	(22.1%)	(26.5%)	(43.8%)	(7.5%)

Training Sets

Evaluation	Track	Unit	Errors .	R	М	S	W
	TOCEL	10,693 。	24,492	4,472	8,739	9,897	1,384
CGED2016	TOCFL .		(100%) .	(18.3%)	(35.7%) 。	(40.4%)	(5.7%)
CGED2010		10,071	24,797	5,538	6,623	10949 .	1,687
	HSK .		(100%) .	(22.3%)	(26.7%)	(44.2%)	(6.8%)
CGED2017	HCM	10.440	26,448	5,852	7,010	11,591	1,995
	HSK -	10,449	(100%) .	(22.1%)	(26.5%)	(43.8%)	(7.5%)

Testing Sets

Evaluation	Track	Unit	Correct Unit	Erroneous Unit	Errors .	R	M	S	W
	тосы	2 500	1 702 (40 20)	1,825 (51.7%)	4, 103	7 82 ₊	1, 482 .	1,613 .	226 .
CCED2016	TOCFL 3	3, 528 🍃	1, 703 (48. 3%)	1,020 (01.7%) &	(100%) 。	(19.06%)	(36. 12%)	(39. 31%)	(5.51%)
CGED2016	HSK ₽	2 011	1,539 (51.1%)	1,472 (48.9%)	3, 695	802 .	991 .	1620	282 .
	пои⊸	3, 011			(100%)	(21.71%)	(26.82%)	(43.84%)	(7.63%)
CCED2017	CGED2017 & HSK &			1 699 (51 6%)	4,876	1,062 .	1, 274	2, 155 .	385 .
CGEDZU17 ₽	пои⊸	3, 154	1, 173 (48. 4%)	1,628 (51.6%)	(100%) .	(21.78%)	(26. 13%)	(44. 20%)	(7.90%)

Testing Sets

Evaluation	Track	Unit	Correct Unit	Erroneous Unit	Errors .	R	M	S	W
	тосы	2 500	1 702 (40 20)	1,825 (51.7%)	4, 103	7 82 ₊	1, 482 .	1,613 .	226 .
CCED2016	TOCFL 3	3, 528 🍃	1, 703 (48. 3%)	1,020 (01.7%) &	(100%) 。	(19.06%)	(36. 12%)	(39. 31%)	(5.51%)
CGED2016	HSK ₽	2 011	1,539 (51.1%)	1,472 (48.9%)	3, 695	802 .	991 .	1620	282 .
	пои⊸	3, 011			(100%)	(21.71%)	(26.82%)	(43.84%)	(7.63%)
CCED2017	CGED2017 & HSK &			1 699 (51 6%)	4,876	1,062 .	1, 274	2, 155 .	385 .
CGEDZU17 ₽	пои⊸	3, 154	1, 173 (48. 4%)	1,628 (51.6%)	(100%) .	(21.78%)	(26. 13%)	(44. 20%)	(7.90%)

Performance Metrics

confusion matrix:

```
False Positive Rate = FP / (FP+TN)
```

Accuracy =
$$(TP+TN) / (TP+FP+TN+FN)$$

F1 = 2*Precision*Recall / (Precision + Recall)

Confusion	n Matrix	System Re	esults
Confusion Matrix Positive		Positive (Erroneous)	Negative(Correct)
Gold Standard	Positive	TP (True Positive)	FN (False Negative)
Gold Standard	Negative	FP (False Positive)	TN (True Negative)

Performance Metrics

▶ The criteria for judging correctness are determined at 4 levels as follows:

Detective-level: Binary classification of a given unit, that is, correct or incorrect

Identification-level: multi-class categorization of error types

Position-level: In addition to identifying the error types, this level also judges the occurrence range of the grammatical error

Correction-level: In the CGED2018, the participant systems are required to offer 0 to 3 recommended corrections to error types of missing and selection. The amount of the correction to recommend depends on the trust computation at each error. More recommendation would increase the recall, but somehow reduce precision, since the gold standard only offers one correction to each error.

Difficulty: Detective < Identification < Position</p>

Submission & Results (CGED2016)

Participant (Ordered by abbreviations of names)	#TRuns	#HRuns
NLP Lab, Zhengzhou University (ANO)	0	2
Beijing Foreign Studies University (BFSU-TZT)	0	0
Beijing Information Science and Technology University (BISTU)	0	0
Central China Normal University (CCNU)	0	1
Chaoyang University of Technology (CYUT)	3	3
Harbin Institute of Technology (HIT)	0	3
Institute of Computational Linguistics, Peking University (PKU)	3	3
Saarland University & Hardvard Medical School (MAZA)	0	0
National Chiao Tung University &	2	0
National Taipei University of Technology (NCTU+NTUT)	3	"
National Chiayi University (NCYU)	3	3
National Taiwan Ocean University (NTOU)	0	0
NLP Lab, Zhengzhou University (SKY)	0	3
Beijing Sogou Inc. (Sogou)	0	0
Dublin City University & National Taiwan University (TWIRL)	0	0
School of Information Science and Engineering,	3	3
Yunnan University (YUN-HPCC)	,	,

15 Participants, 9 made submissions

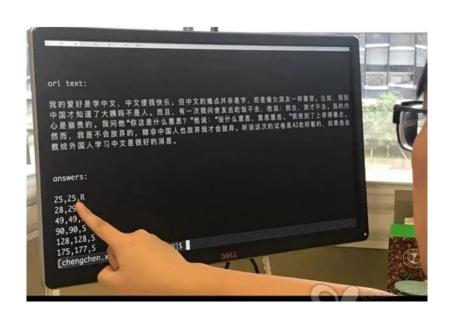
CGED2016·TOCFL

TOCFL	FPR		Detection	n-kvel			Identifica	tion-level		Position-level			
Submission	FFK	Acc.	Pre.	Rec.	F1	Acc.	Pre.	Rec.	F1	Acc.	Pre.	Rec.	F1
CYUT-Run1	0.3470	0.5955	0.6259	0.5419	0.5809	0.5154	0.4600	0.3021	0.3647	0.3113	0.1461	0.1089	0.1248
CYUT-Run2	0.3558	0.5955	0.6236	0.5501	0.5846	0.5133	0.4567	0.3061	0.3666	0.3061	0.1432	0.1092	0.1239
CYUT-Run3	0.3635	0.5941	0.6205	0.5545	0.5856	0.5078	0.4472	0.3001	0.3592	0.3088	0.1196	0.0768	0.0935
NCTU+NTUT-Runl	0.1362	0.5442	0.6593	0.2460	0.3583	0.5110	0.4892	0.1224	0.1958	0.4603	0.2542	0.0483	0.0811
NCTU+NTUT-Run2	0.2913	0.5530	0.6000	0.4077	0.4855	0.4793	0.4036	0.1982	0.2659	0.3784	0.1644	0.0639	0.0920
NCTU+NTUT-Run3	0.3200	0.5612	0.6013	0.4504	0.5150	0.4773	0.3993	0.2185	0.2824	0.3613	0.1521	0.0668	0.0928
NCYU-Run1	0.5602	0.5507	0.5559	0.6542	0.6011	0.3577	0.2749	0.2862	0.2805	0.1728	0.0074	0.0056	0.0064
NCYU-Run2	0.9612	0.5218	0.5202	0.9726	0.6779	0.2328	0.2265	0.4744	0.3066	0.0231	0.0129	0.0195	0.0155
NCYU-Run3	0.8491	0.5363	0.5307	0.8959	0.6665	0.2653	0.2384	0.4134	0.3024	0.0580	0.0130	0.0163	0.0145
PKU-Run1	0.2284	0.5210	0.5739	0.2871	0.3828	0.4575	0.3418	0.1173	0.1747	0.3844	0.0996	0.0263	0.0416
PKU-Run2	0.7205	0.5258	0.5292	0.7556	0.6224	0.3242	0.2792	0.3712	0.3187	0.1381	0.0680	0.0824	0.0745
PKU-Run3	0.5250	0.5349	0.5467	0.5907	0.5678	0.3705	0.2729	0.2192	0.2431	0.2331	0.0872	0.0651	0.0745
YUN-HPCC-Run1	0.6289	0.5420	0.5444	0.7014	0.6130	0.2211	0.1588	0.3196	0.2122	0.0886	0.0002	0.0002	0.0002
YUN-HPCC-Run2	0.5931	0.5026	0.5167	0.5918	0.5517	0.2322	0.1675	0.3136	0.2184	0.0991	0	0	null
YUN-HPCC-Run3	0.3382	0.4847	0.5030	0.3195	0.3908	0.4023	0.2810	0.1359	0.1832	0.2797	0.0012	0.0005	0.0007

CGED2016·HSK

HSK	FPR	Detection-level					I den tifica	tion-level	l		Positio	n-level	
Submission	FFK	Acc.	Pre.	Rec.	F1	Acc.	Pre.	Rec.	F1	Acc.	Pre.	Rec.	F1
ANO-Runl	0.5601	0.5473	0.5297	0.6596	0.5876	0.4723	0.4244	0.4292	0.4268	0.3687	0.2910	0.2460	0.2666
ANO-Run2	0.6517	0.4779	0.4738	0.6135	0.5346	0.2977	0.2243	0.2535	0.2380	0.1157	0.0046	0.0046	0.0046
*CCNU-Run1	0.3294	0.4988	0.4811	0.3193	0.3838	0.4012	0.2425	0.1324	0.1713	0.2806	0.0187	0.0089	0.0121
CYUT-Run1	0.4016	0.6141	0.6003	0.6304	0.6150	0.5714	0.5306	0.4376	0.4797	0.3202	0.2037	0.2138	0.2086
CYUT-Run2	0.4191	0.6118	0.5951	0.6440	0.6186	0.5662	0.5238	0.4509	0.4846	0.3143	0.2034	0.2225	0.2125
CYUT-Run3	0.4016	0.6141	0.6003	0.6304	0.6150	0.5715	0.5306	0.4352	0.4782	0.3304	0.1814	0.1440	0.1605
HIT-Run1	0.4334	0.6377	0.6111	0.7120	0.6577	0.5683	0.5146	0.5219	0.5182	0.4781	0.4034	0.3691	0.3855
HIT-Run2	0.4327	0.6370	0.6108	0.7099	0.6566	0.5744	0.5224	0.5094	0.5158	0.4756	0.3970	0.3483	0.3711
HIT-Run3	0.4516	0.6370	0.6071	0.7296	0.6628	0.5565	0.5002	0.5447	0.5215	0.4475	0.3695	0.3697	0.3696
NCYU-Run1	0.2820	0.5526	0.5629	0.3798	0.4535	0.4554	0.3259	0.1877	0.2382	0.3301	0.0244	0.0095	0.0136
NCYU-Run2	0.9467	0.5042	0.4964	0.9755	0.6580	0.2687	0.2588	0.5263	0.3470	0.0312	0.0158	0.0217	0.0183
NCYU-Run3	0.9818	0.4846	0.4864	0.9721	0.6484	0.2227	0.2195	0.3578	0.2721	0.0148	0.0081	0.0089	0.0085
PKU-Runl	0.7706	0.4972	0.4910	0.7772	0.6018	0.3104	0.2717	0.3991	0.3233	0.1106	0.0523	0.0674	0.0589
PKU-Run2	0.8070	0.5022	0.4945	0.8254	0.6185	0.3144	0.2765	0.3594	0.3125	0.1016	0.0595	0.0923	0.0724
PKU-Run3	0.8213	0.5058	0.4968	0.8478	0.6265	0.3062	0.2694	0.3586	0.3076	0.0896	0.0520	0.0863	0.0649
SKY-Runl	0.0695	0.6523	0.8326	0.3614	0.5040	0.6605	0.8235	0.2732	0.4102	0.6073	0.6153	0.1783	0.2765
SKY-Run2	0.0481	0.6579	0.8746	0.3505	0.5005	0.6765	0.8821	0.2972	0.4446	0.6376	0.7054	0.2217	0.3373
SKY-Run3	0.0559	0.6659	0.8652	0.3750	0.5232	0.6849	0.8744	0.3185	0.4669	0.6477	0.7144	0.2430	0.3627
YUN-HPCC-Run1	0.5608	0.5191	0.5069	0.6026	0.5506	0.3485	0.2800	0.3879	0.3252	0.0654	0.0024	0.0062	0.0035
YUN-HPCC-Run2	0.7122	0.4949	0.4886	0.7113	0.5793	0.3092	0.2681	0.4565	0.3378	0.0373	0.0022	0.0070	0.0034
YUN-HPCC-Run3	0.2710	0.5058	0.4902	0.2724	0.3502	0.4306	0.2886	0.1448	0.1928	0.2701	0.0010	0.0005	0.0007

CGED2017·HSK


	DIDI			Detection	n Level		I	dentificati	on Level			Position	Level		
TEAM	RUNs	False Positive Rate		Precision	Recall	F1	Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall	F1	
	runl	0.6172 (724/1173)	0.6439	0.686	0.7986	0.738	0.488	0.4791	0.5657	0.5188	0.2547	0.2169	0.2752	0.2426	
ALI_NLP	run2	0.6607 (775/1173)	0.6465	0.6792	0.8284	0.7464	0.4654	0.453	0.6006	0.5164	0.2264	0.1949	0.2941	0.2344	
	run3	0.3052 (358/1173)	0.6173	0.7597	0.5714	0.6523	0.5513	0.6007	0.3756	0.4622	0.4121	0.3663	0.213	0.2693	
	runl	0.098 (115/1173)	0.4721	0.7894	0.2176	0.3411	0.4337	0.5474	0.106	0.1776	0.3775	0.2773	0.0418	0.0727	
BNU	run2	0.1355 (159/1173)	0.4794	0.758	0.2514	0.3776	0.4412	0.5527	0.131	0.2118	0.3735	0.2818	0.0515	0.0871	
	run3	0.1893 (222/1173)	0.5181	0.7547	0.3448	0.4733	0.4696	0.5707	0.1786	0.2721	0.3798	0.2968	0.0715	0.1152	
CUTE	run1	0.1441 (169/1173)	0.4756	0.7459	0.2504	0.3749	0.4461	0.606	0.1214	0.2023	0.3314	0.118	0.0204	0.0348	
CVTE	run2	0.3154 (370/1173)	0.539	0.708	0.4528	0.5523	0.4711	0.5391	0.2057	0.2978	0.2602	0.1093	0.0465	0.0653	L
NEOLIA	runl	1 (1173/1173)	0.6281	0.6281	1	0.7716	0.3211	0.3211	0.6099	0.4207	0.0212	0.0212	0.0958	0.0348	
NTOUA	run2	1 (1173/1173)	0.6281	0.6281	1	0.7716	0.3889	0.3889	0.506	0.4398	0.018	0.018	0.082	0.0295	
	run1	0.6513 (764/1173)	0.5796	0.65	0.7163	0.6816	0.4218	0.4219	0.4217	0.4218	0.1778	0.1262	0.1191	0.1225	
YNU- HPCC	run2	0.7383 (866/1173)	0.5891	0.6417	0.7829	0.7053	0.3879	0.3825	0.4575	0.4167	0.1426	0.1056	0.1191	0.112	
	run3	0.6104 (716/1173)	0.5311	0.6298	0.6148	0.6222	0.3979	0.4086	0.3298	0.365	0.1702	0.0981	0.0698	0.0816	

CGED2016

Participant (Ordered by abbreviations of names)	#TRuns	F 1	#HRuns	F1
NLP Lab, Zhengzhou University (ANO)	0	-	2	0.2666
Central China Normal University (CCNU)	0	-	1	0.0121
Chaoyang University of Technology (CYUT)	3	0.1248	3	0.2125
Harbin Institute of Technology (HIT)	0	-	3	0.3855
Institute of Computational Linguistics, Peking University (PKU)	3		3	0.0724
National Chiao Tung University &	3	0.0745	0	
National Taipei University of Technology (NCTU+NTUT)	3	0.0743	U	-
National Chiayi University (NCYU)	3	0.0155	3	0.0183
NLP Lab, Zhengzhou University (SKY)	0	-	3	0.3627
School of Information Science and Engineering,	3	0.0007	3	0.0035
Yunnan University (YUN-HPCC)	3	0.0007	3	0.0033

CGED2017

Participant (Ordered by abbreviations of names)	#Runs	F1
ALI_NLP	3	0.2693
BNU_ICIP	3	0.1152
CVTER	2	0.0653
NTOUA	2	0.0348
YNU-HPCC	3	0.1255

CGED2018

TEAM .	DIP .	Correction .	
DM_NLP .	3 .	3 .	4
AutoNlp -	3 .	3 .	*
BUPT .	3 .	3 .	*
CYUT-III .	3 .	1 .	4
ECNU .	3 .	0 °	4
HFL «	3 .	3 .	4
IIT (BHU)	1 .	0 °	4
ling@Cass	3 .	3 .	•
NCYU ,	3 .	3 .	•
NTOUA .	1 .	0 °	
PkU_ICL .	3 .	3 .	4
UIUC .	2 .	0 °	
walker -	1 .	0 %	

20 Participants, 13 made submissions, 8 recommend correction

What's New from CGED 2015

- ► HSK joined!
- Training Set Doubled, Testing Set Trippled (Each Track!)
- ► Testing Setence --> Testing Unit
 - Multi-Sentence Diagnosis
- One Error each Sentence --> Multi-Errors
- Deep Learning Comes!

Team .	Approach .	Word/Character Embedding	Additional Resources
CYUT .	CRF .	₀	NLP-TEA-1&NLP-TEA-2
HIT .	CRF+LSTM networks	Character Embedding	₀
NCTU+NTUT .	W2V+CRF	Word Embedding	Sinica Balanced Corpus v4.0 LDC Chinese Gigaword v2 CIRB0303 Taiwan Panorama Magazine TCC300 Wikipedia(ZH_TW) NLP-TEA-1&NLP-TEA-2
NCYU .	RNN+LSTM networks	Word Embedding	NLP-TEA-1&NLP-TEA-2
PKU .	Bi-LSTM networks	Word Embedding	NLP-TEA-1&NLP-TEA-2
SKY ,	Ngram+CRF .	+	,
YUN-HPCC	CNN/LSTM networks	Word Embedding	Wikipedia(ZH)

What's New from CGED 2016

- Only HSK!
- ► Testing set was mixed in correct sentences, by sampling real data.
- Deep Learning comes!
- CRF disappeared!

反 思

- ▶ DL as data consuming methods, didn't bring revolution
- ► How to collect L2 writings effeciently
- Agreement in teachers' correction
- PADS should not be a good description of errors
- How to collaborate with cognitive linguistics and language aquisition studies
- Grammatical to Semantical
- Are there words in L2 learners' mind?
- ▶ How did they think when wrote: "】是我们运动员非常重要的"
- Chinese L2 study becoming lower in age; data and processing

反思

```
<TEXT id="200405109523201836 2 1x1">
最好不要再增长吸烟者是对的,可是尊重吸烟者也是应该的。
</TEXT>
<CORRECTION>
吸烟者最好不要再增加是对的,可是尊重吸烟者也是应该的。
</CORRECTION>
<ERROR start off="6" end off="7" type="S"></ERROR>
<ERROR start off="1" end off="10" type="W"></ERROR>
<TEXT id="200505109525202573 2 3x1">
这种的话,大多数的孩子会更发挥自己的能力。
</TEXT>
<CORRECTION>
这样的话,大多数的孩子会更好地发挥自己的能力。
</CORRECTION>
<ERROR start off="1" end off="2" type="S"></ERROR>
<ERROR start_off="13" end off="13" type="S"></ERROR>
<ERROR start off="14" end off="14" type="M"></ERROR>
```

Future Work

Acknowledgments

Consultation:

Lung-hao LEE@ NTNU

Proofreading:

Qi GONG, Peilan TANG, Ping LUO, Jie CHANG @ BLCU

Funds:

THANK YOU!

Find Data!

www.cged.science

